Duchenne muscular dystrophy (DMD) is a disorder related to X-chromosomes that alters 1 in 3500-5600 males which are newly born. Basically illustrated due to the protein known as dystrophin in muscle tissue, that causes continuous catastrophe till death in the 3 decagon of life. The one and only treatment till now which is efficient in lagging the evolution of this ailment is known as corticosteroids, that has been delineated to boost tendon vitality in randomized composed analysis. Persisting researches have indicated that they delay walking time and impede the progress of breathing dysfunction, expounded scoliosis and cardiomyopathy. Various possible drugs are being presently inspected. Genetic analysis comprising infusion of the gene dystrophin via a vector, has been confirmed efficient in animals but not in human. Presently under clinical analysis a drug known as Ataluren or a type of molecule which attached with ribosomes and grants the infusion of the amino acid in the immature exon skipping and codon termination, that attaches with RNA and eliminates particular sites of RNA grafting, generating dystrophin that is functional but smaller. Analysis soliciting to inflect alternative muscular protein, mentioned as utrophin and myostatin, that reduces manifestation.
INTRODUCTION:

DMD exhibits 70% of incomplete gene deletion. DMD is type of genetic disorder due to degeneration of muscle it is one of the 9 forms of dystrophy of muscle it happens due to lack of dystrophin which is a kind of protein that keeps muscle cells intact. It shows its symptoms in initial infancy. This particularly alters boys and in very rare cases it is found in girls. Basically, in the initial stage it influences the hip muscle, arm muscle shoulder and thighs. It leads to predicament in climbing the stairs, floor, and keeping balance and also in lifting the arms. The mild form of DMD is known as BMD (Becker muscular dystrophy) and it is litter slower and less certain than DMD. French neurologist Guillaume amand benjamine duschene was the one who illustrated Duchene muscular dystrophy in the year 1860 but then also the cause of any type of muscular dystrophy was very less well known. Due to the support of MDA in 1986 scientist found a distinct gene on the X-chromosomes which when mutated it leaded to DMD. This X-linked recessive inheritance impression is moved on by the carrier (mother).DMD carriers have more chances of cardiomyopathy. DMD most of the time happens generation to generation in a particular family but there are possibility of Duchene muscular dystrophy to a family with no such symptoms DMD is a Continuous weakness of muscle is a dystrophy of muscle due to group of inherited anarchy. It is the best-known X-linked anarchy. DMD is the muscle disease frequently found in children, with a rate of around 1/4000 males born. Afflicted boys are consistently constrained to wheelchair by the age of 13 and expire very early due to heart failure {MIM 300377} is the biggest human DMD gene encountered till now with extend of 2.5 Mb on Xp21. It subsists of 78 exons and coding for the dystrophin. (1)

The dystrophin and a protein known as sarcoglycan are a component of the big dystrophin related glycoprotein complex (DAGs) that is important for retaining the network between the extra cellular matrix and cytoskeleton also crucial for conserving of the provity of the muscle membrane cell (1). From several year the molecular origination of DMD has been well known but till now no prognostication has been found the only prognostication which is efficient in decelerating the continuation of the illment are corticosteroids due to this the innet antiquity of DMD has changed. Although the mechanism of action has not been understood thoroughly (2). Big deletion are the most prevailing mutation with in locus of dystrophin due to the enormous size of dystrophin gene. The remaining metamorphosis are small infusion / expunction and point metamorphoses in splice sites. The enormous deletion is readily encountered by a screening assay based on PCR, apart from this there are many mutations which are difficult to detect example of this type of mutation is point mutation this mutation is very hard to detect. Subsequently the replication of dystrophin gene, the cDNA was progressed and encrypted amino acid concluded a huge rod like protein of 426 kDa on the base of sequence analogy, dystrophin was anticipated as part of the actin attach protein of spectrin classification. Antibody assisted in contrast to dystrophin were composed by the rabbit’s immunization with distinct parts of dystrophin known as amalgam peptide in microbes. Antibodies discovered a low affluence of protein in the muscle of molecular adiposity of 426 kDa, this molecular weight was anticipated by the progression. Antibodies composed by 3 autonomous groups confined the dystrophin protein to interior surface of plasma membrane of the muscle corpuscle. Protein is approximately not present in the muscles of subject with the serious DMD and of decreased size and affluence in patient with the weaker DMD. Cloning method for gene liable for DMD as enhanced prognostication of the anarchy and a start to the analysis mechanism of molecules that cause the disease. The following biochemical distillation of proteins with dystrophin show the description of a convoluted type of protein which localized and accomplice the membrane of muscle cells with dystrophin. These absorbing proteins comprise of:

1) Dystrobrevins and syntrophins, two proteins that merge straight with the dystrophins C-terminal domain
2) Sarcoglycans, complex of trans membrane protein
3) Dystroglycans, that forms a unambiguous link between the intracellular cytoskeleton actin and extra cellular matrix
The transmembrane protein acknowledged as β-dystroglycan whose dystrophin binds intracellular tail and alpha dystroglycan binded to the extra cellular domain , which in response crunches the laminins extra cellular form .When this kind of linkage is absent the membrane of muscle cell is observed to be very much fragile and even tear under the contraction of stress and even relaxation , with the frequent calcium incursion leads to degradation of protein and degeneration of myofiber .The enactment and description of dystrophin and the accomplished protein leads to normal function of muscle and compassionating of how aberrancy of dystrophin leads to degeneration of myofiber. As dystrophin related protein where cloned, it was examined for its entanglement in the further types of muscular dystrophin which had been clinically analyzed. Usually most of the dystrophin related protein found to be related to autosomal types of dystrophin. 20 various type of gene are recognized that transfer mutation which give growth to various type of muscular dystrophy. In spite of this metamorphoses in compassionating the prognosis and pathogenesis, no such efficient medication for patient deteriorating with this disease has been found. Apart from this there are so many such patient whose primary origin of muscle disease is unidentified .Here the plan of action will evolve an analysis to resequencing rapidly and fiscally to know the genes involved in the different type of dystrophy of muscle the prevailing approaches to recommend muscle related stem cells into afflicted muscle in an effort to provide gene product which are absent , which helps in repairing of muscle(3).There are ample of manifestation in DMD ,which lead to the delay of diagnosis due to the internal consideration or indefinite and when boys show the first manifestation its volatile. An isoform dystrophin is expressed by the cerebellum that varies in some amino acid, P-dystrophin , near by the cerebellar purkinje corpuscle ,the dystrophin isoform, C-dystrophin is illustrated as pyramidal corpuscle of the cortex and the corpuscular body and hippocampus dendrites dystrophin location was identified in 3 subject to expired with a cause of neuromuscular , in corpuscular bodies , brain cortex of dendrite , and purkinje corpuscle , were absent in three DMD patient dystrophin is related to a complex known as protein complex in the muscle many proteins are involved in several process that include microbial pathogenesis .dystrophin glycoprotein complex (DGC) divided into 3 sub categories of complex

1) Sarcoglycan
2) Cytoplasmic
3) Dystroglycan

In various corpuscular process extra, cellular matrix element and dystroglycan complex are synthensis omni presently. It attaches laminin, perlecian, laminin 2 and agrin. The α-dystroglycan attaches dystrophin and β-dystroglycan. α-DG is situated in the teripheral extracellular membrane, where the β-DG, α,β,γ and δ-sarcoglycan and sarcospan is situated over the membrane ,the intra corpuscular protein are rapsyn , cynprophin , Grb2 , n-NOS.A breach in the network between DGC protein a pear in the dystrophinopathic , concluding in secondary lesion and sarcolemma ambiguity from contraction of muscle . Ample range of irregularity found in cases of 30 DMD patient: Mild expounded ventriculum, cortical degeneration, ingenious brain degeneration and several others. In one more study the prevalence of gliosis and neuronal causality, aberrant dendritic branching and Arborization of cortical pointed neuron was observed. 30-40% of children with DMD were found with cognitive deterioration. The children are mentally retarded and the IQ is altered almost once standard from the aberration curve. The typical IQ is 80, and 40% shown and IQ less than 70. The destitute IQ act has shown trait of poor verbal language. This phenomenal observation was done by Zelweger and Karagan, in 53 patients of DMD. In mice brain applying the antibody α-DG the protein was observed in the neuron of cerebral peridium, thalamus, olfactory, hypothalamus , hippocampus , brainstem , basal ganglia and cerebellum . The immunostaining also observed in granule corpuscle of the dentate gyrus hippocampus and hypothalamus and some thalamus, where the dystrophin was not present, but dystrophin isoform and utrophin was present. α-DG attaches to 2 – covering of protein at the corpuscular membrane , neurexin and agrin , which are convoluted in the synaptogenesis .A case shows that α-DG exist in gabaergic synapses and attached to these protein , play its major role in synaptogenesis (4).
Most of the patient remain on the wheel chair in their early teenage capitulating to cardiac failure in their 20s stage. The major problem analyzed in DMD children is the delay of neurodevelopment, which is observed from the years of life psychological and behavioral predicament has been observed in DMD patient and it is very persistent in patient having mutation of exon-44, altering Dp-140(dystrophin isoform illustrated in the brain) and amalgamated in boys with anomaly after 63 exon reacting the précised Dp-71, the dystrophin (isoform illustrated at large level in brain), isoforms are anatomical units of neuron, Schwann corpuscle and glial corpuscle. Prognostication and relevant therapy consist of rehabilitation surgical administration and pharmaco analysis can prevent the child’s perambulation and extend their utilitarian independence, and should be performed as soon as possible, typically before any signs related to muscle pathology or clinical signs. This administration strategically aims in lowering the inflammatory process and slow the necrosis of muscle. The efficient therapy have been analyzed in declining the disease in found to be steroids. Therapeutic research has been investigating for different substitute for muscular dystrophy. The new efficient therapy for DMD are known to be gene therapy, corpuscular therapy, axon skipping therapy and slowing the progression. Skipping of genetic anomaly shows axon skipping method that is insufficient but possibly excellent way in the function of protein sequence. Gene therapy is performed by preceding the dystrophin gene which is not present using several vectors and adeno related virus. They don’t harm human and cause any type of disease and persist many years but till now gene therapy has gone through various practical predicament as it hasn’t been viable solution or clinically feasible the goal of the review is to show modern therapeutic approach used to diagnosed DMD established on articles published in between 2001-2015, the main focus is on therapies likes stem cells due to the most probable treatment of dystrophy related to muscle. (5)
Diagnosis- There are various methods for diagnosis for DMD which are as follows:

- **Genetic Diagnosis** - Usually, the prognosis of DMD can be established on clinical report and the data of not present dystrophin in muscle by immune blot. In spite of internationally accepted guidelines, it is shown that exact assuming of the ingenious alteration at the genomic term is of predominant relevance in form to provide genetic admonishing to family, exact phenotype-genotype interaction and prognosis. Molecular assay when first requested or suspected for DMD it should be perceptible, i.e. equip a measure of the number of genomic regions analoging to each exon of DMD. Around 65-75% of DMD causing alteration are huge displacement (duplication or deletion) containing more than 1 exon it is very easily analyzed in both afflicted males and female carrier through multiplex ligation-reliant inquest amplification (MLPA). The other quantitative method involved (CGH) competitive genomic hybridization multiplex PCR pattern. At any time, quantitative assessment cannot absolutely have defined as mutation, sequencing of the coding DMD section and PCR amplification and nucleotide flanking permits the recognition of single nucleotide replacement. Whereas typical Sanger sequencing is still extensively used, (NGS) next generation sequencing accesses are becoming progressively accessible. In vary less cases where no alteration can be observed by sequencing of DNA genomic coding regions, mRNA DMD can be confined from emaciated muscle tissue. The sequence aberration in the transcription may marked to deep intronic ingenious alteration that may be observed by Sanger sequencing of gDNA intronic regions or through NGS. Systematic work flow in DMD patient helps in the identification of the clear pathogenetic alteration in most of the cases.

- **Molecular Prognosis** - The Best accepted molecular error in DMD gene is the erosion of more than one exon, appearing in 70% cases of DMD, whereas the duplication details for 5-15% of cases. The rest of the cases (Approx. 25%) are due to small alteration (splice sight variation, nonsense and missense) small displacement (infusion / deletion, small transposition). In spite of in the case of lower incidence rate (approx. less than 3%) is caused by complicated rearrangement and wide intronic alteration. The minimal level of prognostic testing is performed for perceptible analysis of DMD gene to described the major alteration of DMD gene, which are exon erosion or duplication, pursued by subjective approach served by entire gene sequence. Between the quantitative procedure available, MLPA (multiplex ligation dependent probe amplification) is presently the best generally used phenomenon. This process of trial simultaneously all of the 79 exon of DMD gene are identified by the(CNV) copy number variation in the multiplex polymerase chain response. One more perceptible full gene access which considers the existence of CNV in the complete region of DMD gene is oligonucleotide situated pattern Comparative Genomic Hybridization (CGH). Even though CGH was originally developed for the cytogenetic analysis to observe chromosomal imbalance, later on other operation have been enhanced involving the molecular genetics. The resilience of CGH pattern is also expected with the applicable resolution designed on the availability of custom pattern. The gene targeted CGH patterns have also advanced to analyze the DMD gene. This technique grants to obtain a complete map of CNV in the DMD gene, including the intronic and 3’-5’ lateral regions that are not examined frequently hence CGH pattern is adapt to reveal convoluted rearrangement and intronic mutation that show precisely mutation break point. The huge mass of inquest in the pattern guarantees the alteration discovered by multiple inquest, in this way abbreviating the probability of improper positive expected to SNPs. Qualitative determination is defined.
by sequencing complete coding region of the DMD gene in the way to identify small alteration (Infusion, single base change, small deletion, splicing mutation). Several termed of technology titled as Next Generation Sequencing (NGS) rises, with a rare biochemical method. NGS bought in the idea of sequencing the millions of types of DNA particles at the same time, expanding DNA sequencing output and abbreviating the cost and time required to accomplished the genetic analysis. Commonly these ways are used in the in-vitro, clonal elaboration or PCR to augment DNA molecule form in the sample pursued by the alternate approach of densely coordinated sequencing based on the pyro sequencing, dye termination reversible, ligation by sequencing and semiconductor ion sequencing as prior example. These stages are presently being applied in clinical laboratory for the molecular analysis by the target apprehending regions of genomic concerned apart from these studies NGS has proved its capability in identifying small alteration in the DMD gene. The application of NGS will lead to the advancement of exclusive prognostic technique, certainly definite computational plan will drive the apperception of Single Nucleotide Variation (SNV) and (CNV) at the same point. The prognostic plan may not detect 3% of convoluted displacement or deep intronic change, hence the RNA assay of muscle tissue utilizing RT-PCR and the sequencing can become mandatory for genetic prognosis in this type of rare alteration. An ingenious prognostic approach, capable to together inspect DMD exon links utilizing particular TaqMan Real Time system have been currently proclaimed this path is accurate new, exon specific and can be used RNA excerpted from the array of patients tissue (corpuscle, skin and muscle), averting the inclusive procedure this technique is capable to identify CNVs and small alteration affecting the composition of exon and to detect changes in mRNA decay of the DMD transcription in patient with out of frame alteration or nonsense. The method for DMD molecular prognosis consist of quantitative analysis, to identify CNVs pursued by genomic sequencing or by NGS. If it is still adverse, analysis of transcript should be operated to detect the genotype in the prognosticated patient (7).

Reading Frame Rule- The prognosis is favorable because it illustrates the sense of developmental lag. A prognosis Duchenne is of following steps -:

- **Steps 1 (Clinical Test)**- The clinical test of the child is the initial prognosis. The clinical test examines the child’s muscle development the doctor enquires whether any member of the family has had Duchenne or any women responsible to be carrier usually carrier is a healthy woman who carries the alteration in dystrophin gene if any history is found related to Duchenne in the family the child passes through many testing, even also if is younger in age.

- **Steps 2 (Examine Creatine Kinase Level)**- If the child is suspected with Duchenne the doctor will test his blood to check CPK level. Basically, creatine kinase is a type of enzyme which help in recovering the damage muscle. The common range of creatine kinase is 70-400 unit per liter. But in the case of Duchenne suffering child the CK level is 20-200 times greater than the usual. If the CK is greater than it is found to be a muscular disease known as myopathy in that child, now to find out that whether the muscle disease is DMD or not the doctor will have performed one more analysis muscle biopsy or genetic analysis.

- **Steps 3 (Genetic analysis)**- In the case of CK level of child the doctor performed genetic analysis to look for alteration that can cause DMD. It is commonly performed through a blood sample, there are various ways for genetic analysis that is use. Some time it takes months to get the conclusion.

- **Steps 4 (Muscle Autopsy)**- If the child have Duchenne signs but the genetic alteration hasn’t been found out in genetic analysis, the
child will go through muscle autopsy. Basically it is a kind of slight surgery in which a small sample of muscle will be removed from the child, the sample of the muscle is send to examine the dystrophin. DMD patient have been viewed to have deletion alteration, the range of the erosion never always interact with asperity of the ailment. DMD patient with relentless symptoms are absent with some exons sometimes short erosions lead to overlapping in DMD, smaller erosion concealed by relentless DMD patient will bring exon together when they will be spliced and may change the translational interpretation frame in mRNA in such a way that immature stop codon is build. This order conclude that DMD patient severely produce truncated type losing the complete C-terminal region and will not produce protein consecutive gene test have displayed that over 85% of erosion alteration causing DMD are commonly frame transfer. Similarly point alteration detected in DMD are nonsense alteration. In the analysis of immuno histochemical the DMD suffering patient have completely absent dystrophin.

(8)

DRUGS (Deflazacort And Prednisone: Cortico-Steroids)

The major drug treatment for DMD is precisely glucocorticoid, deflazacort and prednisone, these drugs are being used for two decades and the affect is well appreciated. They are the one and only treatment that help in increasing strength of muscle. Early analysis showed that it helped in improving the functionality in day today activity. Long term analysis showed that it also reduced the requirement of scoliosis surgery, improved lung function and helped controlled cardiac activity. The increase of strength in muscle arises during the early medication of 6 month. 5 proclaimed long run restrained non randomized trail enhanced above 3 year with deflazacort or prednisone proclaimed that given any of this drug, patient can amble 3-6 year extended life than those not on medication of corticosteroids, even though the spinal stabilization surgery need was also decreased and noninvasive ventilation need deferred. As compared to un treated subject the treated subject were in a good cardiac function and better ventricular ejection one more analysis acknowledge that 92% of the subject treated with the prednisone showed no kind of ventricular dysfunction at the age of 12 compared to 52% uncured subject, the drug also show increase in expectancy of life.

Corticosteroids are recommended for use with considerable proof that it objected of good walking time and reduced in heart, lung, orthopedic complexity. There are some adverse effect of corticosteroids medication. The most persistent adverse effect in this therapy is declined in the height of subject apart from this weight gained is the second common thing and one of the major region for discontinuation of the therapy. In DMD patient steroids therapy is the major issue for weight gain. Whereas deflazacort leads to less gain of weight. Adverse effect including cushingoid facies hirsutism arterial hypertension delayed puberty, acne, behavioral disorder, vertebral fracture immunosuppression and gastrointestinal complication. Even though side effect is less common when the doses indicated are used as prescribed. The prescribed dose of prednisone is 0.75mg/kg every day. Doses which are less than 0.3mg/kg are less efficient and daily inspection seems more efficient than alternate days. In frequent regime are hypothesized to have a improved safety figure in condition of adverse effect, but the dossier from randomized control experiment of in frequent prednisone were nonexistence. Open adherent trial with nonexistent analysis deflazacort described extension of per ambulation. Due to which randomized studies are essential to build the excellent treatment itinerary for longer term. The prevailing instruction for beginning treatment is when the subject is in plateau phase. This commonly appears in the amid of the age 5-7 when the motor development stops in the boy. Presently most of the physician performed treatment even
if the DMD subject has lack the capability to walk, with the intention of retaining the objective of the upper terminus, abbreviating the progress ratio of scoliosis, and abating the deterioration of cardiac action and respiratory function further analysis are still require to identify if none ambulatory subject persist to asset from this medication deflazacort is the oxazoline cognate of the prednisone at the dose of 0.9mg/kg per day, is as efficient as prednisone in diagnosing DMD it is preferred on the local possibility of prednisone and deflazacort on its expense, formation and subject reference. one of the randomized studies shows higher rate of incidence of asperity of weight gain with the prednisone than compare to deflazacort due to which deflazacort is the drug adopted by most of the subject in spite of the prospect of chance of cataract is exalted in analog with prednisone: in non-randomized trial 20-40% of cataract was identify at a rate of 3.3 years of medication with deflazacort, therefore this subject should we observed on yearly basis by the ophthalmologist

Genetic Analysis - Analysis currently been drone out on the possibility of genetic therapy where the dystrophin gene is infused in spite of various restriction have meet ahead. Due to the dystrophin gene size it makes strenuous to performed in gene therapy. So mini dystrophin and smaller gene have been discovered that can be infused in the vector. The most applicable vector formed till now is a virus related with adeno virus, non-pathogenic parvovirus it has depicted to show immunological reaction in the way to assess the reaction, MDX mice dys/dys- was created and one proof is that when the gene is infused the dystrophin is asserted moderately and strength of muscle is enhanced whereas in exploratory analysis on human 90 days following the treatment inception the gene interpretation was not detected, observation suggest that corpuscular immunity constrains the progress of this therapeutic treatment.

Exon Skipping - Exon skipping in DMD subject as specified before the altered gene illustrate deletion, point alteration, duplication which interfere the genetic instruction reading frame. Currently analyst is searching to infuse RNA misinterpret, thereby permitting the infusion alternate amino acid at the place of altered immature termination codon. In arbitrary there is a consequential data to approved the usage of cortico steroid for all subject of DMD with the aim of conserving walking time as long as feasible and reducing orthopedic, heart, lung complication, generally there are many adverse effect in the treatment through cortico steroids that must be studied the most common adverse effect is in the reduction of height subject in long term medication. It also leads to decreased mobility, whereas as compared to prednisone deflazacort causes more cataracts. Vertebral rupture diverse by 10-32% in medicated subject in the conventional scoliosis radiograph analysis 80% of the ruptures were identify and not leaded by clinical manifestation. Presently the exon skip analysis is based on the skipping on exon 51 whose skipping is pertinent in large no of subject including 13 % of DMD subject pursued by alteration in exon 45. 2 antisense oligonucleotide which are presently under analysis.

- **2-O-methyl-phosphorothioates (2 OMP):** Analysis were basically carried on MDX mice with 2 OMP on the exon 23, they displayed the existence of dystrophin in emaciated muscle fiber but was not present in the heart. a clinical analysis was performed than on 4 subject DMD with PRO051/GSK2402964 and the analyst identified that 65-96% of the muscle fiber asserted the dystrophin protein at a quantity of 18-36%. No such kind of Sid effect were identifying presently the multi centric analysis is going on.

- **Phophorodiamidate morpholino oligomer (PMO):** Analysis with MDX mice have displayed the existence of dystrophin in muscle fiber but even also in heart after management of high dose (0.9mg) composed the dystrophin at 23-33% levels of common muscle fibers. In this analysis no toxicity sign was identify where as in the previous analysis executed on non-human anthropoid had depicted tubular deterioration in kidney. The effect of this drug is limited and transitory.
Aminoglycoside—In corpuscle culture gentamicin combines with ribosomal 40s subunit in the RNA transcription, restraining the terminating codon and infusing amino acid at its place which displaces it. In the analysis of MDX mice in human gentamicin was able to produce dystrophin interpretation in muscle fiber at 20% of usual level whereas analysis on DMD subject remain still controversial.

Ataluren (PTC 124)—Ataluren is an oral drug which has similar result as gentamicin, but is bounded to the 60s ribosomal subunit. Its adequacy in MDX mice is identical to gentamicin which helps in generating 20-25% of muscle fiber through dystrophin interpretation. With the following observation randomized, double blind, metacentric, analysis was performed on 173 subject .48 weeks later after having the low dose of ataluren the patient were observed with some improvement in the 6 minute walk analysis.

Myostatin—Is a protein composing part of the altering development factor for B–family, which manages muscle length muscular hypertrophy identified in mice of myostatin DNA (MYS-/MYS-) myostatin served as possible medication of DMD. Myostatin antitoxin was infuse in MDX mice generating hypertrophy of muscle and better strength. Till now only one clinical trial was performed on humans with antitoxin against myostatin (MYO-029) in adult subject with dystrophy of muscle which was well tolerant but ineffective in showing strength in muscle.

Utrophin—In the muscle of DMD subject utrophin contribute dystrophin sequence it has been observed that regulation could lag the progress of ailment. The infusion of larginine or nitric oxide or heregulin in MDX mice boost the interpretation of utrophin in histologic development a drug developed by Summit PLC (C110/BM195) on healthy subject that was proven to be tolerant even though pharmacokinetic of the medicine not allowed the continuation of medication. (2)

MEDICATION:

<table>
<thead>
<tr>
<th>S. No</th>
<th>Generic Name</th>
<th>Brand Name</th>
<th>FDA Approval</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deflazacort</td>
<td>Emfalza</td>
<td>9/2/2017</td>
<td>Transactivation and pression</td>
</tr>
<tr>
<td>2</td>
<td>Eteplirsen</td>
<td>Exondys</td>
<td>19/09/2016</td>
<td>Antisense Oligonucleotide</td>
</tr>
</tbody>
</table>

DISCUSSION—It is hard to assimilate the accomplishment due to use of different goal enrichment technique and different sequencing method that are updating instantly. The cut off bring for definite variant observation, considering minimum depth read ,variant range percentage related with the quality score and wild variety obtaining that few issues are innate in NGS technique apart from target region it is observed that the dystrophin DNA advantages on the target region situated in autosomal chromosome (10).Imitated number of variation such as duplication and deletion in dystrophin DNA is culpable for most of DMD and BMD cases. As MLPA is observed to be easily performed and time efficient technique it can allow trial of huge number of sample in short period of time, for the utilization of MLPA technique generally applied equipment are used such as capillary sequencer and heat lid thermocycler , it is easy to conduct MLPA in a typical prognostic laboratory, so it can surely be carried out in countries with low income for affirmative prognosis of BMD and DMD decreasing the muscle autopsy requirement one more advantage of MLPA is in identifying female carrier . Generally this technique is not feasible with multiple PCR therapy because dystrophin DNA erosion are covered by elaboration of the X- chromosomes (11) .MLPA is the quite reliable ,rapid and simple obscuring apparatus that scrutinizes duplication and deletion with a sensitiveness ranging 64-80% but current analysis include MLPA cases that are positive in the study and correlated to observing several outcomes of dystrophinopathy and phenotypic demonstration (12).Earlier analysis showed the possibility of oral administration of 20-O-methoxy methyl moderately phosphorothioate oligonucleotide (ISIS 104838) aiming the human cyst necrosis factor α in the MRNA of healthy volunteer and deagle dogs(13).Numerous strategies evolved for gene therapy for dystrophy of muscle clinically will full conclusion are anticipated by an escalation of delivery of vascular route utilizing booster
gene (14). Investigator are discovering ways to used gene therapy and stem cell to surely medicate DMD other methods are also being in the process of discovery to at least find out the weakness that evolves in this condition(15). The clinical prognosis of DMD remains ardently delayed that not only aggravate underline physical imbalance but also carries DMD cares center from carrying high clinical concerned that can meaningfully enhanced its effect.(16)

CONCLUSION-
Advanced and inventive DMD related investigational operative clinical move into clinical study it is demanding to buildup knowledge and define the corpus of the essential history evidence present to the scientific association. The main aim is to bring chief investigator from all over the world to discuss general history dossier and launch a collaborated design to enhance the discovery of new DMD medicine. The retrospective studies and anticipated analysis will show importance source of interpreting and planning of clinical trial by providing positive control of effect of treatment the improvement parameter will rise in children with DMD on steroids. The protein related approach followed by molecular studies is possibly the most coherent and enhanced way to analyses prognosis of DMD, whereas entire immunohistochemistry investigation with all applicable dystrophin antitoxin is helpful way to performed the molecular genetic analysis that are effective at the appropriate genetic treatment in given case. Over the few years the accurate genetic treatment and upgraded molecular treatment has played a major role in diagnosis. Subject suitable for exon 51 skipping can be diagnosed with exon dys 51. Subject with MLPA or other perceptible assays for large erosion examine negative can be analyzed with DMD DNA sequencing in a way to grant genetic admonishing to the family and subject with nonsense alteration may be acceptable for diagnosis with translama or with any other imminent clinical studies, while the enhancement of the medication has been very slow in DMD subject, Who combat everyday facing the amelioration of this mutilating ailment. There are sense to anticipate in better designing of clinical study and also in discovery number of effective drug in the aqueduct of clinical research. Even though the molecular prognosis of DMD is challenging, miraculous growth has made in the last few years arising in comprehensive molecular examine capable to identify many types of mutation (deep intronic, point alteration, duplication/deletion). Exact prognosis loosing high input method as NGS and CGH will take to more efficient medication for subject, the main challenge for the treatment of DMD is to discovered the most efficient and safe molecule. Presently the only effectively available medication for subject of DMD is corticosteroids but its efficacy is not clear completely. The expertise of pathophysiology dystrophin contrivance and an amalgam of molecule and Nano material of delivery system that are effective are stable, deterioration and aims specify problem will grant the discovery of new drugs for a hopeful DMD treatment.

REFERENCES-

